G1 总览

G1 的主要关注点在于达到可控的停顿时间,在这个基础上尽可能提高吞吐量。G1和CMS相同,都属于并发收集器,在大部分的收集阶段都不需要挂起应用程序。区别在于,G1 没有 CMS 的碎片化问题(或者说不那么严重),同时提供了更加可控的停顿时间。
如果应用使用了较大的堆(6GB及以上),而且还要求有较低的垃圾收集停顿时间(0.5),那么G1是一个很好的选择。
首先是内存划分上,之前介绍的分代收集器将整个堆分为年轻代、老年代和永久代,每个代的空间是确定的。
而 G1 将整个堆划分为一个个大小相等的小块(每一块称为一个 region),每一块的内存是连续的。和分代算法一样,G1 中每个块也会充当 Eden、Survivor、Old 三种角色,但是它们不是固定的,这使得内存使用更加地灵活。
执行垃圾收集时,和 CMS 一样,G1 收集线程在标记阶段和应用程序线程并发执行,标记结束后,G1 也就知道哪些区块基本上是垃圾,存活对象极少,G1 会先从这些区块下手,因为从这些区块能很快释放得到很大的可用空间,这也是为什么 G1 被取名为Garbage-First的原因。

在 G1 中,目标停顿时间非常非常重要,-XX:MaxGCPauseMillis=200 指定期望的停顿时间。
G1 使用了停顿预测模型来满足用户指定的停顿时间目标,并基于目标来选择进行垃圾回收的区块数量。G1 采用增量回收的方式,每次回收一些区块,而不是整堆回收。
我们要知道 G1 不是一个实时收集器,它会尽力满足我们的停顿时间要求,但也不是绝对的,它基于之前垃圾收集的数据统计,估计出在用户指定的停顿时间内能收集多少个区块。
注意:G1 有和应用程序一起运行的并发阶段,也有 stop-the-world 的并行阶段。但是,Full GC 的时候还是单线程运行的,所以我们应该尽量避免发生 Full GC,后面我们也会介绍什么时候会触发 Full GC。

G1 内存占用

G1 比 ParallelOld 和 CMS 会需要更多的内存消耗,那是因为有部分内存消耗于簿记(accounting)上,如以下两个数据结构:

  • Remembered Sets:每个区块都有一个 RSet,用于记录进入该区块的对象引用(如区块 A 中的对象引用了区块 B,区块 B 的 Rset 需要记录这个信息),它用于实现收集过程的并行化以及使得区块能进行独立收集。总体上 Remembered Sets 消耗的内存小于 5%。
  • Collection Sets:将要被回收的区块集合。GC 时,在这些区块中的对象会被复制到其他区块中,总体上 Collection Sets 消耗的内存小于 1%。

G1工作流程

G1 收集器主要包括了以下 4 种操作:
1、年轻代收集
2、并发收集,和应用线程同时执行
3、混合式垃圾收集
*、必要时的 Full GC

年轻代收集

Young GC是并行、stop-the-world的,将活着的对象复制到Survivor
区,或者晋升到Old区(达到晋升年龄),未来下一次Young GC,需要调整Eden区和Survivor区的大小。

Old GC / 并发标记周期

接下来是 Old GC 的流程(含 Young GC 阶段),其实把 Old GC 理解为并发周期是比较合理的,不要单纯地认为是清理老年代的区块,因为这一步和年轻代收集也是相关的。下面我们介绍主要流程:

  • 初始标记:stop-the-world,它伴随着一次普通的 Young GC 发生,然后对 Survivor 区(root region)进行标记,因为该区可能存在对老年代的引用。
    • 因为 Young GC 是需要 stop-the-world 的,所以并发周期直接重用这个阶段,虽然会增加 CPU 开销,但是停顿时间只是增加了一小部分。
  • 扫描根引用区:因为先进行了一次 YGC,所以当前年轻代只有 Survivor 区有存活对象,它被称为根引用区。扫描 Survivor 到老年代的引用,该阶段必须在下一次 Young GC 发生前结束。
    • 这个阶段不能发生年轻代收集,如果中途 Eden 区真的满了,也要等待这个阶段结束才能进行 Young GC。
  • 并发标记:寻找整个堆的存活对象,该阶段可以被 Young GC 中断。
    • 这个阶段是并发执行的,中间可以发生多次 Young GC,Young GC 会中断标记过程
  • 重新标记:stop-the-world,完成最后的存活对象标记。使用了比 CMS 收集器更加高效的 snapshot-at-the-beginning (SATB) 算法。
    • Oracle 的资料显示,这个阶段会回收完全空闲的区块
  • 清理:清理阶段真正回收的内存很少。

混合垃圾回收周期

并发周期结束后是混合垃圾回收周期,不仅进行年轻代垃圾收集,而且回收之前标记出来的老年代的垃圾最多的部分区块。
混合垃圾回收周期会持续进行,直到几乎所有的被标记出来的分区(垃圾占比大的分区)都得到回收,然后恢复到常规的年轻代垃圾收集,最终再次启动并发周期。

Full GC

到这里我们已经说了年轻代收集、并发周期、混合回收周期了,大家要熟悉这几个阶段的工作。
下面我们来介绍特殊情况,那就是会导致 Full GC 的情况,也是我们需要极力避免的:
concurrent mode failure:并发模式失败,CMS 收集器也有同样的概念。G1 并发标记期间,如果在标记结束前,老年代被填满,G1 会放弃标记。
这个时候说明
- 堆需要增加了,
- 或者需要调整并发周期,如增加并发标记的线程数量,让并发标记尽快结束
- 或者就是更早地进行并发周期,默认是整堆内存的 45% 被占用就开始进行并发周期。

  • 晋升失败:并发周期结束后,是混合垃圾回收周期,伴随着年轻代垃圾收集,进行清理老年代空间,如果这个时候清理的速度小于消耗的速度,导致老年代不够用,那么会发生晋升失败。
    • 说明混合垃圾回收需要更迅速完成垃圾收集,也就是说在混合回收阶段,每次年轻代的收集应该处理更多的老年代已标记区块。
  • 疏散失败:年轻代垃圾收集的时候,如果 Survivor 和 Old 区没有足够的空间容纳所有的存活对象。这种情况肯定是非常致命的,因为基本上已经没有多少空间可以用了,这个时候会触发 Full GC 也是很合理的。
    • 最简单的就是增加堆大小
  • 大对象分配失败,我们应该尽可能地不创建大对象,尤其是大于一个区块大小的那种对象。

G1 参数配置和最佳实践

G1 调优的目标是尽量避免出现 Full GC,其实就是给老年代足够的空间,或相对更多的空间。

  • 增加堆大小,或调整老年代和年轻代的比例,这个很好理解
  • 增加并发周期的线程数量,其实就是为了加快并发周期快点结束
  • 让并发周期尽早开始,这个是通过设置堆使用占比来调整的(默认 45%)
  • 在混合垃圾回收周期中回收更多的老年代区块
    参数介绍
    -XX:+UseG1GC
    使用 G1 收集器

-XX:MaxGCPauseMillis=200
指定目标停顿时间,默认值 200 毫秒。
在设置 -XX:MaxGCPauseMillis 值的时候,不要指定为平均时间,而应该指定为满足 90% 的停顿在这个时间之内。记住,停顿时间目标是我们的目标,不是每次都一定能满足的。

-XX:InitiatingHeapOccupancyPercent=45
整堆使用达到这个比例后,触发并发 GC 周期,默认 45%。
如果要降低晋升失败的话,通常可以调整这个数值,使得并发周期提前进行

-XX:NewRatio=n
老年代/年轻代,默认值 2,即 1/3 的年轻代,2/3 的老年代
不要设置年轻代为固定大小,否则:
G1 不再需要满足我们的停顿时间目标
不能再按需扩容或缩容年轻代大小

-XX:SurvivorRatio=n
Eden/Survivor,默认值 8,这个和其他分代收集器是一样的

-XX:MaxTenuringThreshold =n
从年轻代晋升到老年代的年龄阈值,也是和其他分代收集器一样的

-XX:ParallelGCThreads=n
并行收集时候的垃圾收集线程数

-XX:ConcGCThreads=n
并发标记阶段的垃圾收集线程数
增加这个值可以让并发标记更快完成,如果没有指定这个值,JVM 会通过以下公式计算得到:
ConcGCThreads=(ParallelGCThreads + 2) / 4^3

-XX:G1ReservePercent=n
堆内存的预留空间百分比,默认 10,用于降低晋升失败的风险,即默认地会将 10% 的堆内存预留下来。

-XX:G1HeapRegionSize=n
每一个 region 的大小,默认值为根据堆大小计算出来,取值 1MB~32MB,这个我们通常指定整堆大小就好了。